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ON LIMIT OF THE LARGEST EIGENVALUE OF THE
LARGE DIMENSIONAL SAMPLE COVARIANCE MATRIX

Y. Q. Yin, Z. D. Bai, and P. R. Krishnaiah

ABSTRACT

In this paper, the authors showed that the largest eigenvalue of the

sample covariance matrix tends to a limit under certain conditions when

both the number of variables and the sample size tend to infinity. The

above result is proved under the mild restriction that the fourth moment

of the elements of the sample sums of squares and cross products (SP)

matrix exist.

Keywordsp Largest eigenvalue, sample covariance matrix, large dimensional

random matrices, limit.
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1. INTRODUCTION

The distribution of the largest eigenvalue of the sample covariance

matrix is useful in certain problems of inference in the area of multi-

variate analysis. For example, it is useful in testing the hypothesis

that the eigenvalues of the covariance matrix are equal to a specified

value. Geman (1980) showed that the largest eigenvalue of A = WW'/n

tends to (1 + y)2 almost surely when lim (p/n) = y, W = (w and wij I

are distributed independently with mean zero and variance one. In

proving the above result, Geman assumed that E wiijn < n an for n = 1, 2,...

and a positive constant a. Jonsson (1983) announced the above result under
the weaker condition that E(w 1 1 17) < - by using a "truncation" method.

Recently, Silverstein (1984) proved the same result under the condition

that E w1 1 6+ < 0 where c > 0 is arbitrary. In the present paper, we

prove the above result under a much weaker condition that Elw 1 1 4 < 0.
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2. PRELIMINARIES

The following results are needed in the sequel:

Lemma 2.1. For any 6 > 0, we have

Jr[ 2k~k)[2 (1

for all 1 < r < k < k, where (n} = n!/m!(n - m)!.

Proof. Let

I () k 9.r] 21for r 0., i9-...

Then, we have for r - 0, 1, 2,...,Z - 1,

I(r + 1) (2r + 1)(k - r)
I(r) [2(1 - r) - 1][k - (Z -r) + 1]

But

(2r + 1)(k - r) - [2( - r) - l][k - (Z - r) + 1]

(2r - I + 1)(2k- 21 + 1) > 0 iff 2r > I - 1.

So,

I(r + 1) > I iff 2r > Z - 1.
I(r) -

Hence 1(r) has its maximum at 1(0) - I(t), and so
°' ~ ~~(k](Zkr (2-I'k  2rj',6k-1 < (2k-1] k-1 k -1k)E 6k- Z

k

r [ :t [ k ) 2- ( 1

In studying strong limit properties of random matrix, the techniques

of truncation and centralzaton play an important role.

Lemma 2.2. (Truncation Lemma). Let r be a number belongng to the

interval [- ,2] and let , 1, j - , 2,...} be a collection of id

random variables with Ew11 -0 and E[w 11 2 /r< . orecndfe

r] (' i
<~+6 <. Fo eac +, dei
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W to be p x n matrix whose (i,j)th entry is w1., where p f p(n) is such

n i

that p/n - y c (0,-) as n ". Then there exists a sequence of positive

numbers 6 i 6 such that
n

(a) 6 0 as n ,

(b) The convergence rate of 6 can be slower than any preassigned rate,

n(c) P (Wn 0 W n , I.o.) = 0.

where W is the p x n matrix whose (i,j)-th entry is wl1 = wijI[1wi <6nr]

and IA denotes the indicator of the set A.

Proof. Since E~w 11
2/r < -, we have for any E > 0

2 22m p(wlll > E2 m r ) < .

Because of the arbitrariness of E in the above inequality, there exists a

sequence of positive numbers e = em such that

(1) em+ 0, when m - .

(2) The rate of convergence is slower than any preassigned rate,

(3 22 elm 2mr)<
(3 ~ ~ lii > Cm <rnr)

rn-i m
Define 6 = 6 n = 2cm for 2m  < n < 2. It is obvious that such a sequence

of 6 satisfies the requirements (a) and (b). Define W with this 6. Because

P + y, 0 < y <, we have p < 2yn when n is large enough. Thus
n

A

P(W n  W , i.o.)
n n

k-o mk 2m-1<n<2m i=I =Iw

2y 2m 2m

urn P( U% (1wi I M
" rn-k 2m -I <n< 2m

2y2m 2m

k1rw rnk i-i ( i1

lkm 2y 2
2mP(lwi.11 £m2r) 0

_- ,-. -. . . - . - .
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which completes the proof.

Lemma 2.3. (Centralization Lemma) Under the assumptions of Lemma 2.2,

we have

max(n) - max (n)I 0. a.s. (2.1)

where X (n) and X (n) are the largest eigenvalues of W' andmax max 2r n n
I n

and - Wn respectively, and W is the n x n matrix whose (i,j)th entry
rn n n

n
is V jn - wijn"

Proof. Denote by M the n x n matrix whose entries are all EWiin.-- n

Since 2
-+1JE11nI < Ejw11![Iwlll>a/]l _<E 112/r(Svr-) r  ,

we obtain

max (n) - max (n)j

< n-2r {2 sup a'WMnal + =l a'M2a

-2 n aiwi nEW2

mnr 2  sup 11 aIlI I ^a Elni + 12

ihu i j l i ijn 1 n

a 2.2

<cn - n 2 \1!~~i~ /2 -2n+3 -4j+2}
UlJ

2

< cn (r-1)2-1 -6 - w+

i-i -

2 (r-) -+2

+ n 6 P 0, a.s. if r > I.

• . . - . .2. . .. ".,,,,;.,. .... ... :
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S)2 -r 2 1/2
< C nn 2

I J=

+ n r A 4r 0, a.s. if r < 1. (2.2)

In proving the above result, we have used the facts that

n-2r X 2 ---- 0, a.s. if r > 1,~~i=l 1=1w i

and
-2 n ! 2 j  E2

n -Ew a.s. if r < 1,j n-

which can be seen from Marc-inkiewicz strong law of large numbers.

Remark 1. Throughout this paper, we will use Lemmas 2.2 and 2.3 with

rI-, and the requirement (b) is specified as

(b') 6 log n - , when n - -. (2.3)

Remark 2. From Lemuas 2.2 and 2.3 we can easily see that

ax(n) - a (n) 1 0, a.s. as n -,
max max

if the conditions of Theorem 1 hold, where Xmax (n) is the largest eigen-

value of 1-W W'nn n

[-1

I"
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3. SOME RESULTS ON GRAPH THEORY

Given a sequence (il,Jl,i2,j2 ,...,ijk), where k are

integers in the set {l,...,pl, and Jl,...,J k are integers in the set

(1,...,n}, we define a directed multigraph as follows. We draw two

parallel real lines, I-line and J-line. We plot il,.... ik on the

I-line and plot jl,...,j k on the J-line. These are vertices and they

are split into two disjoint classes on the two parallel lines. So

even if the two integers ia and Jb are equal, they will not be the

same vertex because i belongs to I-line and j belongs to J-line.
ab

But if ia = ib (or Ja = jb) , we regard these two vertices identical.

Edges of the directed bigraph will be the directed segments ilil,

Jl i 2' 2 J 2 i 3 ,....ikk, Jkil . They are 2k in number and they should

be regarded different from each other, even in the case when two

edges have the same initials and ends.

Sometimes it is conveniant to denote ia by v and J by v2a

So the vertices of the graph are vl1,v2,..., v2k, and the edges are

v1v2, v2v3 ,...,V 2k-lv 2k, v2kVl. Notice that when we write an edge as

vav we always mean that v is the initial vertex and v a+ is the
a a+l' aal

end vertex, the direction of the edge is from v to va Va+l"

When two edges vava+1 , vbvb+l have the same vertex sets, i.e.

[ vv {V v we cannot conclude that vV = sincea a+l b' b+l' a a+1 vbV~l, ic

VV+ 1  Vb+vr <=> a b. When {v + = {Vb,v l, we say that the

two edges coincide.

The graph we just constructed will be called a W-graph.

A W-graph will be called canonical, if v < max{v v .... +_

for each a > 2, and vI M 1, v2 w 1.

In the following, we will get a bound for the number of canonical

W-graphs.

S::
. . . . .I
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In a canonical W-graph, an edge vaV (a > 2) will be called an

innovation, if Va does not occur in v1,v2 ,...,v a _1 . Suppose valv a is

an innovation. If a is odd, Va-lVa is called a row innovation, and if

a is even, a column innovation. Note that v v2 is a column innovation

according to the above definition.

In a W-graph, an edge val v a (a > 2) is said to be single up to vb

(b > a), if there is no edgev v with 1 < c < b such thatv v
c-i c c-i c

coincides with v aiv a  An edge VbliVb (b > 3) will be called a T3-edge

if there is an innovation Va~iVa, single up to Vbl, and vbvb,

ValVa coincide.

An edge will be called a T4-edge if it is not an innovation and

not a T3-edge.

A consecutive segment v v v v of the whole W-graph will be
a a+i"* b-i b

called a chain.

Lemma 3.1. Let vv+l...v be a chain such that

(1) vV+i is single up to ,

(2) v has been visited by v1v2 ...v .

Then the chain contains at least one T4-edge.

Proof. When c- a = 1, evidently vava+ va is an edge of T4.

We know that vc 1 v must be a T4 or a T3 since it cannot be an

innovation. If it is a T4, the proof is completed. If vc-vc is a T3,

then there is a single innovation vb-ivb coincident with v liVc such

that b < c.

Case 1. b> a+l. Since v V then either
c b-i c b' hnete

v a v l .. .V or vav.a+ v has the properties (1),(2) and is shorter

than VaVa+l ...Vc. By induction hypothesis vava+l...vb contains a T4-edge,

but it is a part of the chain v va+l ...v . So the original path contains

aC

a T4-edge.

I ' ,'".J ' ' '." . ° " " , " ,' . ' . " " " . " ". " "• ' . • ". " .. ". •." . " 4 - .
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Case 2. b < a+l, i.e. vbvb is in the path vv V and then

vC_1 i (vb or vb-1) is visited by vv 2 ***v a Thus vv+l ...V 1 has

the properties (1),(2). By induction, the lemma is proved.

Note: In a W-graph, the chain vlv2 ... va+ determines

completely whether the edge vava+1 is an

innovation, a T or a T
3 4

Lemma 3.2. If in the chain vlv2.. .v, there are s edges, each of which*

is single up to va and has a vertex equal to va and if t is the number of

noncoincident T4 edges in vv 2 ... v a, then s< t + 1.

Proaof. Let v 1 v a v a2 1 "-. v +1 be all the single edges such

that a <a2 <... < a andva va +1'"va Va +1are single up to va , and

v = v SO...= v = va1  a2  as  a

Consider chains L2 - va2Va2+l ... Va3 , L3 = va3V ... vd, ...,

Ls  v v +i .v By Lemma 3.1, L2 has a T4-edge E2  Let v be
s as  3

the first vertex in L3 which belongs to L2. Then by Lemma 3.1

Va3 Va3 +1 .. Vb3 contains an edge of T4 and we denote it by E3.

Evidently, E3 and E2 are not coincident. Let vb be the first vertex

of L4 which also belongs to L2 U L3. Then vaVa+l ...Vb has an edge

of T4, by Lemma 3.1. Let it be denoted by E4. Evidently no two of

E2E3E 4 are coincident. Continue this procedure. Finally, we get

s-1 edges of T4, which are not coincident with each other. So

s-1 < t , 8 < 1+t.

A T3 edge vava+l is called regular, if there is more than one

innovation with a vertex equal to v and single up to va a

Lemma 3.3. In any W-graph there is amapping 0 from regular T3

edges to T4 edges such that for any T4 edge E, there are at most two

regular T3 "edges whose 0 image is E.

I3
ft.
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Proof. Define P as follows.

Let va v a +1 V ,., v v +1 be the set of all innovations
11 22 s  s

single up to va such that

(1) v a 2 v a --... =v va

(2) v =v or v v

a1 a a1+l a

(3) a < a <...<a < as = a.
2 s s+l

We note that there is at most one innovation inward to v and if there
a

is such an innovation, it must be the foremost one among innovations

with a vertex v
a

In this W-graph, v av a+ must coincide with one of va v a+l ,* " Va 

Let that one be VaV+l. Also, let

i + 1, if a* = ai, for i =1,.,s-1,
V= )(a) = +1"

s, if a* = a.

By Lemma 3.1, in the path C - v v ... v there is ata a a.+I a+l

least one edge of T4. Let the first one be E . Define O(v v ) = E
v* a a a+l a-

At first we prove that if va va+l' bV l are two regular T3 edges

and va # v b then Ea Eb (EaEb may coincide). Suppose Ca = va'va'+l''.Va",

C b = vb,Vb,+l ...Vb,,  Then, we have the following possibilities to

consider:

(1) a' < a" < b' < b",

(2) a' < b' < a" < b",

(3) a' < b' < b" < a".

For case (1), E # Eb is evident.

Consider case (2). Ca, C0 are divided into three parts as

VatVa'+l*Vb" Q2  Vb'Vb+l'".Vaa"t Q3  Va"Va"+l""Vb" as given

in the following diagram.

. .. .,: .- .. '. . . . -.. . .. . . . . . . . . . . . . .. . . .. . . . . ..
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It is enough to show that Ea is in QlEb is in Q2 U Q3 " By

definition, there is an innovation vbVb,+ with b* < b', Vb,=Vb ,=Vb ,

single up to vb. If b* < a', by Lemma 3.1, Q1 contains a T4-edge. If

a' < b* < b', we can consider the chain Vb*Vb, l.. vb,; it is part of

Q and it contains a T4-edge by Lema 3.1. So Ea  Q1 " It is

obvious that Eb is in Q2 U Q3 " Thus Ea 0 Eb .

Consider (3). As before, we can show that E is in v va Va Va'+"" "b'

and Eb is in VbVb,+l...Vb.,.

Then we consider the case va vb and a < b. Now vava+19 VbVb+l

both are regular T3 edges and so they coincide with single innovations

V and VbVb,+l. VaVa*+l and vbvb*+l cannot coincide. So

Ea 0 Eb except Va*Val, Vb*Vb*+1 are the last two single innovations.

-1
In the last case 0 (Ea ) has cardinal 2.

a



At last we get that the mapping : a v~ akEfr eua

T 3's has the property that (D- CE a has at most two edges of T 3*The -

proof of Lemma 3.3 is completed.

A2
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4. LIMIT OF THE LARGEST EIGENVALUE

We now prove the main result of our paper.

* Theorem 3.1. Let {w ij 1,2,... be an infinite matrix of
ij

lid random variables, Ewll = 0 and Ew41 1 < W. If X (n) denotes the
11 11max

largest eigenvalue of the matrix I W here W denotes the p x n

random matrix [w ; I = 1,...,p; j = 1,...,n), then
ii

2 2
lim X (n) = (1 + y) Ew a.s.

max 11

as n -* , p - and p/n -* y.

Proof. Without loss of generality, we assume that Ew 2 1. We
11

only have to prove that lm Xmax (n) < (1 + ry)2 a.s. . But, according

to Remark 2 of Section 2, it is sufficient to show that

lim X(n) <_ ( + )2 a.s.
max

In other words, we asmie in the sequel that

(1) Iwij [ < ,

(2) Ewij 0,

2
(3) Ew < 1,

(4) Ejw 1 (r')z-1 for I > 2,

0 (5) V. t-(5) Ewj < c(6/) - , for Z> 3.

Now, choose z > (1 + Vy arbitrarily. We will now show that

(6) E z <

where k - k satisfies

n

(7) k/ -log n -

61/6

S(8) k /logn-' 0.(8)' n

0

-:*- * :i'-:~ * >-*.~.*.*%*;*
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We have

EB (n)]k < E tr( W w WT) = n E tr(WW )
max n

n n w w w  ... w . Ii j l  i 2Jl 12J2 ki k Wlk

Here the summation is taken in such a way that i,...,i k run over all

integers in {l,...,pl , and Jl'**'"Jk run over all integers in

{l,. .. ,n}.

The above sum can be split in the following form.

1 T - Z'' .
E tr(-W WT) = n A IIitIftE wnn E i  .

w1 2J 1 wi 2J 2 " wkJk WilJ k '

here

- summation for different arrangements of four different types

of elements at the 2k different positions.

- summation for different canonical graphs r with given

arrangement of the four types for 2k positions.

-summation of E wi l wiJ ... w for which the graph is

i lil 2ilik

isomorphic to the given canonical graph.

Let r denote the number of row innovations, Z denote the number

of T3 edges. Then there are Z - r column innovations and Ck - 21)T 4

(k k 2k-1)edges and so I' is bounded by I I ['J trl I Since every row

£I rul

innovation leads to a free i-index and every column innovation leads to

a free J-index except the first column innovation vlV2 which leads to

an i-index and a j one. We know that i sbounded by p -raniidxadis bone yp n .

To bound , let t denote the number of noncoincident T4 edges.

By definition, each innovation in a canonical W-graph is uniquely

determined by the chain before it and each nonregular T3 edge is so
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done as innovations. If t 0, i.e. Z f k, then by Lemma 3.3, there

are no T4 edge and regular T3 edge, so that is only one summand.

For t > 1, since each T4 edge in a canonical W-graph must be one of the

elements in the kxk matrix (wij) i < k, j < k, all the possibilities

that 2k- 2N T4 edges may take are less than k2) t2k -2 . By Lemmas 3.2

and 3.3, all the possibilities that all the regular T3 edges take is

not more than (t+l) 4k-4 Hence I' is bounded by I t2k2 (t+l)2ti bunedby-t6)
4 -4

<k 2 t (t+l) 6k-6.

Finally, we bound the expectation E wij wi . w wij.1 1 2jl "* i'kjk wijk '
If t = 0, each expectation is (E w2) z< 1. For t > 1, let u denote

the number of innovations which coincide with at least one T4 edge and

let n denote the number of T4 edges which coincide with the i-th such

innovation, i = l,2,...,i, respectively.

Let m. be the number of T4 edges which coincide with. each other3

but not with any innovation, j = l,2,...,t-p. Then we have

2 wk- 1 ni+2 t- m l.w w (E w1 1 ) n (Ew1 1  ) wIEi il wi2Jl, Ik3k l~k il J.l 11

1' t-11

where 2(%-P) + . (ni + 2) + m - 2k and P < t. By (3),(4) and
•i-l ju l

(5) we have.. (ni-1)+ (M (-1)

E w j i ... i i < C (6 vn 1) i l j l40E Will wi2Jl " ikJk lj

- c1  (6') 2k-21-t < kt( /in) 2k-2t-t

when k is large enough.

By the above argument, we obtain

V

... ' '" '' - . - * .' '- - .' - - - .' -.f. '"t' . ." . . . .- - ' . ." .. " .-.... '' , ' . . . .- . .-. "''
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1 T k ~kk Z (k) (." (2k-Z) r+1 Z-r,2 k-2 Z 2t 6k-6ZE tr(- W Wn < n- lr  p n k (t+l)
lO r=1 t=O

kt(6,7--) 2k-2Z-t]

k_ k(, I (£k Z (P r 2 k 3t t*1 - Z -ft] kZ
< =11r 1rl ==0 k tl (

Using the elementary inequality a-t (t+l)b < [-- b for a > 1, b > 0,LJ-g a)

t > 0, we have

2k-2Z ( 6k-6£ ]6k-6£
Sk 3 t+l) (n) - t < 2k og6n

t=O k

< 2k 6k 16(k-£)

214- logn+ log6- 3 logk

< 2k -o J when n is large enough.

Using Lemma 2.1, we get for all large n

1 T kE t r( W W

k Z r 1/6 6(k-)

< 2kp (1+ )2 +t 1 o n

2 1861 1 6  k((lpv'p/n) + log n
1/k 2 ~--- 2 + ~ 16k

(2kp)I /k 2 + i (1 p++n logn

k
<TI,

where n is a constant satisfying (l+vry) < n < z. Here the last

inequality follows from the following facts:

( ) (2kp)I / k --- 1, because k/log n - and p/n - y e (0,-)

(b) (I+v )2 -- * 1, because 6 - 0

(c) (1+ 7! - - (1+y ?, because p/n - y e (O,=)
([186 1/6 k 6 61/6

(d) (.l .k 6 0, because 6 k / logn - 0.

This leads to (6) since k/log n - = and the proof is thus complete.
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